

POLITECNICO DI MILANO

Piazza Leonardo da Vinci, 32 - 20133 Milano Tel. +39.02.2399.1 - http://www.polimi.it

Advanced Course on

HIGH RESOLUTION ELECTRONIC MEASUREMENTS IN NANO-BIO SCIENCE

Impedance Measurement Architectures and performance Marco Sampietro

Impedance [Ohm]

Admittance [Siemens]

Why using/measuring/designing

Impedance measurements extract R, L, C values in an electronic circuits ...

... but can also access the conduction properties and the dissipative properties of a new device/material/molecule/etc.

Impedance in terms of single R & C

Re{Z}, Re{Y} → energy dissipation (4kTRe{Z}, 4kTRe{Y})

• Im{Z}, Im{Y} \rightarrow energy storage

Plotting the Impedance

Alternative (equivalent) ways to plot impedance values

ChatGPT Q&A (1)

If the DUT contains a resistive part and a capacitive part, how would be the impedance of the DUT as a function of frequency ?

To summarize, as the frequency increases:

- The magnitude of the reactance decreases.
- The impedance transitions from being mostly imaginary (capacitive) to being primarily real (resistive).
- The impedance magnitude approaches the resistance value.

becomes comparable to or smaller than the resistance (X \leq R), the impedance of the DUT starts to decrease.

 At high frequencies: At very high frequencies, the reactance of the capacitor becomes negligible compared to the resistance. In this case, the impedance is primarily determined by the resistance value, similar to the behavior in the series configuration.

To summarize, in the parallel configuration:

- At low frequencies, the impedance is mainly determined by the resistance.
- As the frequency increases, the capacitive reactance decreases, leading to a decrease in impedance.
- At high frequencies, the impedance is dominated by the resistance.

What you say is true if the resistance and the capacitance are in series. What happens when the resistance and the capacitance are in parallel ?

POLITECNICO DI MILANO

ChatGPT Q&A (2)

Be careful, you made a mistake. When you say "*At very high* frequencies, the reactance of the capacitor becomes negligible compared to the resistance. In this case, the impedance is primarily determined by the resistance value, similar to the behavior in the series *configuration*", you are wrong. At very high frequency the impedance become zero. Do you agree ?

You are correct, and I apologize for the incorrect statement in my previous response. I apologize for any confusion caused.

In the parallel configuration of a resistance and a capacitor, at very high frequencies, the impedance does not become primarily determined by the resistance. Instead, it tends towards zero impedance. This occurs because the capacitive reactance decreases as the frequency increases, and at extremely high frequencies, it becomes very small compared to the resistance.

To clarify, at high frequencies:

ß

- The capacitive reactance decreases with increasing frequency.
- As the frequency becomes very high, the capacitive reactance approaches zero.
- The impedance of the parallel combination tends towards zero because the reciprocal of a very large value (small reactance) tends towards zero.

Therefore, at very high frequencies, the impedance of a parallel combination of resistance and capacitance approaches zero rather than being primarily determined by the resistance. I apologize for the incorrect statement in my previous response, and I appreciate your correction.

POLITECNICO DI MILANO

ChatGPT enquire

Myself: How can I measure the impedance of a device ?

chatGPT : Using an Impedance Analyzer

Using an LCR Meter

Bridge Circuit

Oscilloscope and Function Generator using the voltagedivider principle

Lock-in configuration

The Lock-in system is indeed ideal to perform IMPEDANCE measurements (and tracking it with time)

By sweeping the frequency, you can easily perform IMPEDANCE SPECTRUM

Mixture of R & C in real sensors

R & C selectivity of the LOCK-IN

Lock-In: in-phase detection

Lock-In: in-quadrature detection

Lock-In: Impedance of R||C

From single frequency to spectrum

POLITECNICO DI MILANO

Extracting elements from a spectrum

POLITECNICO DI MILANO

Pre-defined models in LCR meters

Calibration

Amplifiers and connections introduce errors in amplitude and phase

<u>Ideal calibration</u>: with a known sample (amplitude and phase)

C=1pF at 1MHz Phase error 0.6° (a pole distant two decades)

G_{err} = ω C_x sin(0.6°) = 6·10⁻⁸ S (16MΩ, to be compared with ∞)

If ϕ_{err} =10° than 1/G_{err}=1M Ω !

Contribution of strays (resistances)

POLITECNICO DI MILANO

4 probes Impedance measurement

Impedance at the Nanoscale

Problems given by strays (capacitance)

Neduction of sensitivity

A stray parallel capacitance C_{stray} may:

saturate the front-end or gain stages

Reduce gain \Rightarrow reduce resolution

require ADC with large bit number

Smaller number of

Compensation in current sensing

An active capacitance compensation can be useful:

Strays compensation in LCR meter (1

OPEN

You Lift the probes (a little)

The instrument :

- Measures (the strays, mainly capacitance)

- Memorizes the values *Re* and *Im* at different f
- Correct the following meas.
 with these values

Strays compensation in LCR meter (2

SHORT You Put probes in contacts

The instrument

- Measures (the strays, mainly resistance-inductance)
- Memorizes the values *Re* and *Im* at different f
- Correct the following meas. with these values

Strays compensation in LCR meter (3

In addition USE 4 PROBES

POLITECNICO DI MILANO

marco.sampietro@polimi.it

Impedance spectroscopy with lock-in requires a separate measurement for each frequency \rightarrow **long time**

Alternatives : Apply many-frequencies as stimulus and process in parallel; Apply white noise at input and calculate the DFT of signals.

POLITECNICO DI MILANO

ChatGPT enquire

Myself: How can I measure the impedance of a device ?

chatGPT : Using an Impedance Analyzer

Using an LCR Meter

Bridge Circuit

Oscilloscope and Function Generator using the voltagedivider principle

Balancing Bridge: Working Principle

$$V = V_{ac} \left(\frac{Z_x}{Z_1 + Z_x} - \frac{Z_3}{Z_2 + Z_3} \right)$$

Balanced for V = 0 \checkmark $Z_x = Z_3 \frac{Z_1}{Z_2}$

Bridge Pros and Cons

Pros:

Voltage reader operates always with V≈0V

Common mode rejection

Good accuracy (no active stages, depends on the accuracy of the reference impedances)

Cons:

- Requires several switches
- Slow balancing routine
- Not very convenient for spectroscopy

Solution Examples of Commercial Instruments

GR 1650-A (1957) ... fully manual

Natiometric: Half Bridge

A phase sensitive detector is needed

 Z_1 has to be accurate (wide dynamic) :

•
$$Z_x >> Z_1$$
: $V_{out} \approx AV_{ac}$
• $Z_x << Z_1$: $V_{out} \approx 0$ $Z_1 \sim Z_x$

Difficult at the nanoscale

POLITECNICO DI MILANO

Capacitance detection: Effect of Cstray

DC bias of Z_x not defined

Resistance detection: Effect of Cstray

At high frequencies ($\omega > 1/C_pR_x||R_1$)

 \rightarrow R_x shunted by C_p!

Example: a cube of intrinsic Si (~1k Ω cm), side = 50nm $\rightarrow R_x = 200M\Omega$, cut-off frequency = 160Hz (C_p = 5pF)

Comparison

Ratiometric:

- C_p limits bandwidth and accuracy
- No control of the voltage applied to Z_x
- Z₁ must match Z_x

Current sensing:

- Independent of C_p (wide-band opamp)
- Precise control of the voltage applied
- Need to access both terminals of Z_x
- Loop stability depends on Z_x (but at the nanoscale dominated by stray capacitance ≈ known)

In terms of resolution they are equivalent

Go to chatGPT and ask questions on this lesson :

How can I measure the impedance of a device ?

How to use an Impedance Analyzer.

How do I choose the frequency of the AC signal ?

How would change the impedance as a function of frequency ?

Do you find this lesson as an added value to chatGPT?

- - -