POLITECNICO DI MILANO

Piazza Leonardo da Vinci, 32 - 20133 Milano
Tel. + 39.02.2399.1 - http://w'w w.polimi.it

Advanced Course on
High Resolution Electronic Measurements in Nano-Bio Science

Impedance Measurement Architectures and performance

Marco Sampietro

Definition

Amplitude \&
Phase \&
Frequency
$Z=\frac{V}{I} \quad$ is a complex quantity

Impedance [Ohm]

Admittance [Siemens]

Why using/measuring/designing

Impedance measurements extract R, L, C values in an electronic circuits ...

... but can also access the conduction properties and the dissipative properties of a new device/material/molecule/etc.

Impedance in terms of single R \& C

- $\operatorname{Re}\{Z\}, \operatorname{Re}\{Y\} \rightarrow$ energy dissipation (4kTRe\{Z\}, 4kTRe\{Y\})
- $\operatorname{Im}\{Z\}, \operatorname{Im}\{Y\} \rightarrow$ energy storage

Plotting the Impedance

Alternative (equivalent) ways to plot impedance values
Bode Plots

Time tracking

ChatGPT Q\&A (1)

If the DUT contains a resistive part and a capacitive part, how would be the impedance of the DUT as a function of frequency?

What you say is true if the resistance and the capacitance are in series. What happens when the resistance and the capacitance are in parallel ?

To summarize, as the frequency increases:

- The magnitude of the reactance decreases.
- The impedance transitions from being mostly imaginary (capacitive) to being primarily real (resistive).
- The impedance magnitude approaches the resistance value.
becomes comparable to or smaller than the resistance ($\mathrm{X} \leq$
R), the impedance of the DUT starts to decrease.

3. At high frequencies: At very high frequencies, the reactance of the capacitor becomes negligible compared to the
resistance. In this case, the impedance is primarily determined by the resistance value, similar to the behavior in the series configuration.

To summarize, in the parallel configuration:

- At low frequencies, the impedance is mainly determined by the resistance.
- As the frequency increases, the capacitive reactance
decreases, leading to a decrease in impedance.
- At high frequencies, the impedance is dominated by the resistance.

ChatGPT Q\&A (2)

Be careful, you made a mistake.
When you say "At very high frequencies, the reactance of the capacitor becomes negligible compared to the resistance. In this case, the impedance is primarily determined by the resistance value, similar to the behavior in the series configuration", you are wrong. At very high frequency the impedance become zero. Do you agree ?

You are correct, and I apologize for the incorrect statement in my previous response. I apologize for any confusion caused.

In the parallel configuration of a resistance and a capacitor, at very high frequencies, the impedance does not become primarily
determined by the resistance. Instead, it tends towards zero
impedance. This occurs because the capacitive reactance decreases as the frequency increases, and at extremely high frequencies, it becomes very small compared to the resistance.

To clarify, at high frequencies:

- The capacitive reactance decreases with increasing frequency.
- As the frequency becomes very high, the capacitive reactance approaches zero.

> - The impedance of the parallel combination tends towards zero because the reciprocal of a very large value (small reactance) tends towards zero.

Therefore, at very high frequencies, the impedance of a parallel combination of resistance and capacitance approaches zero rather than being primarily determined by the resistance. I apologize for the incorrect statement in my previous response, and I appreciate your correction.

ChatGPT enquire

Myself : How can I measure the impedance of a device?
chatGPT : Using an Impedance Analyzer
Using an LCR Meter
Bridge Circuit
Oscilloscope and Function Generator using the voltagedivider principle

Lock-in configuration

The Lock-in system is indeed ideal to perform IMPEDANCE measurements (and tracking it with time)

By sweeping the frequency, you can easily perform IMPEDANCE SPECTRUM

Mixture of R \& C in real sensors

R \& C selectivity of the LOCK-IN

Reference \& resistance : in phase

Lock-In: in-phase detection

Two multipliers are used to obtain both Re and Im of a DUT

Lock-In: in-quadrature detection

Lock-In: Impedance of R\|C

From single frequency to spectrum

Extracting elements from a spectrum

What is inside my device?

1) Measure at $\quad|Z|^{\wedge}$ different frequencies
2) Extract
your model

Pre-defined models in LCR meters

You select the model.
The instrument gives you the $\mathrm{R} \& \mathrm{C}$ values

Calibration

Amplifiers and connections introduce errors in amplitude and phase

Ideal calibration: with a known sample (amplitude and phase)

Example: $\quad C=1 \mathrm{pF}$ at 1 MHz Phase error 0.6°
(a pole distant two decades)

$\mathrm{G}_{\text {err }}=\omega \mathrm{C}_{\mathrm{x}} \sin \left(0.6^{\circ}\right)=6 \cdot 10^{-8} \mathrm{~S}$
($16 \mathrm{M} \Omega$, to be compared with ∞)
If $\varphi_{\text {err }}=10^{\circ}$ than $1 / G_{\text {err }}=1 \mathrm{M} \Omega$!

Contribution of strays (resistances)

Stray resistance

4 probes Impedance measurement

Stray resistance
of connection

Impedance at the Nanoscale

$$
\tau=R C=\rho \frac{d}{\text { Area }} \cdot \varepsilon \frac{\text { Area }}{d} \quad \tau=\rho \varepsilon=2 \mathrm{ps} \text { independent of size }
$$

Problems given by strays (capacitance)

Reduction of sensitivity

A stray parallel capacitance $\mathrm{C}_{\text {stray }}$ may:

- saturate the front-end or gain stages

Reduce gain \Rightarrow reduce resolution

- require ADC with large bit number

Compensation in current sensing

An active capacitance compensation can be useful:

- If $\mathrm{C}_{\mathrm{c}} \ll \mathrm{C}_{\mathrm{p}}$ the noise and stability are not affected
- Calibration required

Strays compensation in LCR meter (1

OPEN

You Lift the probes (a little)
The instrument :

- Measures (the strays, mainly capacitance)
- Memorizes the values $R e$ and Im at different f
- Correct the following meas. with these values

Strays compensation in LCR meter (2

SHORT
You Put probes in contacts
The instrument

- Measures (the strays, mainly resistance-inductance)
- Memorizes the values $R e$ and $I m$ at different f
- Correct the following meas. with these values

Strays compensation in LCR meter (3

In addition USE 4 PROBES

Digital LOCK-IN amplifiers

Impedance spectroscopy with lock-in requires a separate measurement for each frequency \rightarrow long time

Alternatives : Apply many-frequencies as stimulus and process in parallel; Apply white noise at input and calculate the DFT of signals.

Next lesson by Giorgio Ferrari

This afternoon by Francesco Zanetto

chatGPT enquire

Myself : How can I measure the impedance of a device?
chatGPT : Using an Impedance Analyzer
Using an LCR Meter
Bridge Circuit
Oscilloscope and Function Generator using the voltagedivider principle

Balancing Bridge: Working Principle

- Z_{1}, Z_{2}, Z_{3} known and variable (switches)
- V_{ac} sinusoidal

$$
\boldsymbol{V}=V_{a c}\left(\frac{Z_{x}}{Z_{1}+Z_{x}}-\frac{Z_{3}}{Z_{2}+Z_{3}}\right)
$$

Balanced for $\mathrm{V}=\mathbf{0} \Rightarrow Z_{x}=Z_{3} \frac{Z_{1}}{Z_{2}}$

Bridge Pros and Cons

Cons:

- Requires several switches
- Slow balancing routine
- Not very convenient for spectroscopy

Examples of Commercial Instruments

GR 1650-A (1957) ...fully manual

Ratiometric: Half Bridge

Ratiometric i.e. $V_{\text {out }}$ depends on the impedance ratio Independent of the absolute value

A phase sensitive detector is needed
Z_{1} has to be accurate (wide dynamic) :

$$
\left.\begin{array}{ll}
\text { - } Z_{x} \gg Z_{1}: & V_{\text {out }} \approx A V_{a c} \\
- & Z_{x} \ll Z_{1}: \\
V_{\text {out }} \approx 0
\end{array}\right\} \Rightarrow Z_{1} \sim Z_{x} \quad \begin{aligned}
& \text { Difficult at the } \\
& \text { nanoscale }
\end{aligned}
$$

Capacitance detection: Effect of Cstray

Reduces the accuracy !
DC bias of Z_{x} not defined

Resistance detection: Effect of Cstray

At high frequencies $\left(\omega>1 / C_{p} R_{x} \| R_{1}\right)$
$\rightarrow R_{x}$ shunted by C_{p} !

Example: a cube of intrinsic $\operatorname{Si}(\sim 1 \mathrm{k} \Omega \mathrm{cm})$, side $=50 \mathrm{~nm}$
$\rightarrow R_{x}=200 \mathrm{M} \Omega$, cut-off frequency $=160 \mathrm{~Hz}\left(C_{p}=5 p F\right)$

Comparison

Ratiometric:

- C_{p} limits bandwidth and accuracy
- No control of the voltage applied to Z_{x}
- Z_{1} must match Z_{x}

Current sensing:

- Independent of C_{p} (wide-band opamp)
- Precise control of the voltage applied
- Need to access both terminals of Z_{x}

- Loop stability depends on Z_{x} (but at the nanoscale dominated by stray capacitance \approx known)

In terms of resolution they are equivalent

ChatGPT enquire

Go to chatGPT and ask questions on this lesson :
How can I measure the impedance of a device?
How to use an Impedance Analyzer.
How do I choose the frequency of the AC signal ?
How would change the impedance as a function of frequency ?

Do you find this lesson as an added value to chatGPT?

